Metamath Proof Explorer


Theorem blsscls

Description: If two concentric balls have different radii, the closure of the smaller one is contained in the larger one. (Contributed by Mario Carneiro, 5-Jan-2014)

Ref Expression
Hypothesis blsscls.2 J = MetOpen D
Assertion blsscls D ∞Met X P X R * S * R < S cls J P ball D R P ball D S

Proof

Step Hyp Ref Expression
1 blsscls.2 J = MetOpen D
2 eqid x X | P D x R = x X | P D x R
3 1 2 blcls D ∞Met X P X R * cls J P ball D R x X | P D x R
4 3 3expa D ∞Met X P X R * cls J P ball D R x X | P D x R
5 4 3ad2antr1 D ∞Met X P X R * S * R < S cls J P ball D R x X | P D x R
6 1 2 blsscls2 D ∞Met X P X R * S * R < S x X | P D x R P ball D S
7 5 6 sstrd D ∞Met X P X R * S * R < S cls J P ball D R P ball D S