Metamath Proof Explorer


Theorem blsscls2

Description: A smaller closed ball is contained in a larger open ball. (Contributed by Mario Carneiro, 10-Jan-2014)

Ref Expression
Hypotheses mopni.1 J = MetOpen D
blcld.3 S = z X | P D z R
Assertion blsscls2 D ∞Met X P X R * T * R < T S P ball D T

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 blcld.3 S = z X | P D z R
3 simplr3 D ∞Met X P X R * T * R < T z X R < T
4 xmetcl D ∞Met X P X z X P D z *
5 4 ad4ant124 D ∞Met X P X R * T * R < T z X P D z *
6 simplr1 D ∞Met X P X R * T * R < T z X R *
7 simplr2 D ∞Met X P X R * T * R < T z X T *
8 xrlelttr P D z * R * T * P D z R R < T P D z < T
9 8 expcomd P D z * R * T * R < T P D z R P D z < T
10 5 6 7 9 syl3anc D ∞Met X P X R * T * R < T z X R < T P D z R P D z < T
11 3 10 mpd D ∞Met X P X R * T * R < T z X P D z R P D z < T
12 simp2 R * T * R < T T *
13 elbl2 D ∞Met X T * P X z X z P ball D T P D z < T
14 13 an4s D ∞Met X P X T * z X z P ball D T P D z < T
15 12 14 sylanr1 D ∞Met X P X R * T * R < T z X z P ball D T P D z < T
16 15 anassrs D ∞Met X P X R * T * R < T z X z P ball D T P D z < T
17 11 16 sylibrd D ∞Met X P X R * T * R < T z X P D z R z P ball D T
18 17 ralrimiva D ∞Met X P X R * T * R < T z X P D z R z P ball D T
19 rabss z X | P D z R P ball D T z X P D z R z P ball D T
20 18 19 sylibr D ∞Met X P X R * T * R < T z X | P D z R P ball D T
21 2 20 eqsstrid D ∞Met X P X R * T * R < T S P ball D T