Metamath Proof Explorer


Theorem blssec

Description: A ball centered at P is contained in the set of points finitely separated from P . This is just an application of ssbl to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis xmeter.1 ˙ = D -1
Assertion blssec D ∞Met X P X S * P ball D S P ˙

Proof

Step Hyp Ref Expression
1 xmeter.1 ˙ = D -1
2 pnfge S * S +∞
3 2 adantl D ∞Met X P X S * S +∞
4 pnfxr +∞ *
5 ssbl D ∞Met X P X S * +∞ * S +∞ P ball D S P ball D +∞
6 5 3expia D ∞Met X P X S * +∞ * S +∞ P ball D S P ball D +∞
7 4 6 mpanr2 D ∞Met X P X S * S +∞ P ball D S P ball D +∞
8 3 7 mpd D ∞Met X P X S * P ball D S P ball D +∞
9 8 3impa D ∞Met X P X S * P ball D S P ball D +∞
10 1 xmetec D ∞Met X P X P ˙ = P ball D +∞
11 10 3adant3 D ∞Met X P X S * P ˙ = P ball D +∞
12 9 11 sseqtrrd D ∞Met X P X S * P ball D S P ˙