Metamath Proof Explorer


Theorem blssex

Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion blssex D ∞Met X P X x ran ball D P x x A r + P ball D r A

Proof

Step Hyp Ref Expression
1 blss D ∞Met X x ran ball D P x r + P ball D r x
2 sstr P ball D r x x A P ball D r A
3 2 expcom x A P ball D r x P ball D r A
4 3 reximdv x A r + P ball D r x r + P ball D r A
5 1 4 syl5com D ∞Met X x ran ball D P x x A r + P ball D r A
6 5 3expa D ∞Met X x ran ball D P x x A r + P ball D r A
7 6 expimpd D ∞Met X x ran ball D P x x A r + P ball D r A
8 7 adantlr D ∞Met X P X x ran ball D P x x A r + P ball D r A
9 8 rexlimdva D ∞Met X P X x ran ball D P x x A r + P ball D r A
10 simpll D ∞Met X P X r + P ball D r A D ∞Met X
11 simplr D ∞Met X P X r + P ball D r A P X
12 rpxr r + r *
13 12 ad2antrl D ∞Met X P X r + P ball D r A r *
14 blelrn D ∞Met X P X r * P ball D r ran ball D
15 10 11 13 14 syl3anc D ∞Met X P X r + P ball D r A P ball D r ran ball D
16 simprl D ∞Met X P X r + P ball D r A r +
17 blcntr D ∞Met X P X r + P P ball D r
18 10 11 16 17 syl3anc D ∞Met X P X r + P ball D r A P P ball D r
19 simprr D ∞Met X P X r + P ball D r A P ball D r A
20 eleq2 x = P ball D r P x P P ball D r
21 sseq1 x = P ball D r x A P ball D r A
22 20 21 anbi12d x = P ball D r P x x A P P ball D r P ball D r A
23 22 rspcev P ball D r ran ball D P P ball D r P ball D r A x ran ball D P x x A
24 15 18 19 23 syl12anc D ∞Met X P X r + P ball D r A x ran ball D P x x A
25 24 rexlimdvaa D ∞Met X P X r + P ball D r A x ran ball D P x x A
26 9 25 impbid D ∞Met X P X x ran ball D P x x A r + P ball D r A