Metamath Proof Explorer


Theorem blssm

Description: A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion blssm D ∞Met X P X R * P ball D R X

Proof

Step Hyp Ref Expression
1 blf D ∞Met X ball D : X × * 𝒫 X
2 fovrn ball D : X × * 𝒫 X P X R * P ball D R 𝒫 X
3 1 2 syl3an1 D ∞Met X P X R * P ball D R 𝒫 X
4 3 elpwid D ∞Met X P X R * P ball D R X