Metamath Proof Explorer


Theorem blval

Description: The ball around a point P is the set of all points whose distance from P is less than the ball's radius R . (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Assertion blval D ∞Met X P X R * P ball D R = x X | P D x < R

Proof

Step Hyp Ref Expression
1 blfval D ∞Met X ball D = y X , r * x X | y D x < r
2 1 3ad2ant1 D ∞Met X P X R * ball D = y X , r * x X | y D x < r
3 simprl D ∞Met X P X R * y = P r = R y = P
4 3 oveq1d D ∞Met X P X R * y = P r = R y D x = P D x
5 simprr D ∞Met X P X R * y = P r = R r = R
6 4 5 breq12d D ∞Met X P X R * y = P r = R y D x < r P D x < R
7 6 rabbidv D ∞Met X P X R * y = P r = R x X | y D x < r = x X | P D x < R
8 simp2 D ∞Met X P X R * P X
9 simp3 D ∞Met X P X R * R *
10 elfvdm D ∞Met X X dom ∞Met
11 10 3ad2ant1 D ∞Met X P X R * X dom ∞Met
12 rabexg X dom ∞Met x X | P D x < R V
13 11 12 syl D ∞Met X P X R * x X | P D x < R V
14 2 7 8 9 13 ovmpod D ∞Met X P X R * P ball D R = x X | P D x < R