Metamath Proof Explorer


Theorem bncmet

Description: The induced metric on Banach space is complete. (Contributed by NM, 8-Sep-2007) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses iscms.1 X = Base M
iscms.2 D = dist M X × X
Assertion bncmet M Ban D CMet X

Proof

Step Hyp Ref Expression
1 iscms.1 X = Base M
2 iscms.2 D = dist M X × X
3 bncms M Ban M CMetSp
4 1 2 cmscmet M CMetSp D CMet X
5 3 4 syl M Ban D CMet X