Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Boundedness
bndmet
Next ⟩
isbndx
Metamath Proof Explorer
Ascii
Unicode
Theorem
bndmet
Description:
A bounded metric space is a metric space.
(Contributed by
Mario Carneiro
, 16-Sep-2015)
Ref
Expression
Assertion
bndmet
⊢
M
∈
Bnd
⁡
X
→
M
∈
Met
⁡
X
Proof
Step
Hyp
Ref
Expression
1
isbnd
⊢
M
∈
Bnd
⁡
X
↔
M
∈
Met
⁡
X
∧
∀
x
∈
X
∃
y
∈
ℝ
+
X
=
x
ball
⁡
M
y
2
1
simplbi
⊢
M
∈
Bnd
⁡
X
→
M
∈
Met
⁡
X