Metamath Proof Explorer


Theorem bndmet

Description: A bounded metric space is a metric space. (Contributed by Mario Carneiro, 16-Sep-2015)

Ref Expression
Assertion bndmet M Bnd X M Met X

Proof

Step Hyp Ref Expression
1 isbnd M Bnd X M Met X x X y + X = x ball M y
2 1 simplbi M Bnd X M Met X