Metamath Proof Explorer


Theorem bndndx

Description: A bounded real sequence A ( k ) is less than or equal to at least one of its indices. (Contributed by NM, 18-Jan-2008)

Ref Expression
Assertion bndndx x k A A x k A k

Proof

Step Hyp Ref Expression
1 arch x k x < k
2 nnre k k
3 lelttr A x k A x x < k A < k
4 ltle A k A < k A k
5 4 3adant2 A x k A < k A k
6 3 5 syld A x k A x x < k A k
7 6 exp5o A x k A x x < k A k
8 7 com3l x k A A x x < k A k
9 8 imp4b x k A A x x < k A k
10 9 com23 x k x < k A A x A k
11 2 10 sylan2 x k x < k A A x A k
12 11 reximdva x k x < k k A A x A k
13 1 12 mpd x k A A x A k
14 r19.35 k A A x A k k A A x k A k
15 13 14 sylib x k A A x k A k
16 15 rexlimiv x k A A x k A k