Metamath Proof Explorer


Theorem bnj1001

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1001.3 χ n D f Fn n φ ψ
bnj1001.5 τ m ω n = suc m p = suc n
bnj1001.6 η i n y f i
bnj1001.13 D = ω
bnj1001.27 No typesetting found for |- ( ( th /\ ch /\ ta /\ et ) -> ch" ) with typecode |-
Assertion bnj1001 Could not format assertion : No typesetting found for |- ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj1001.3 χ n D f Fn n φ ψ
2 bnj1001.5 τ m ω n = suc m p = suc n
3 bnj1001.6 η i n y f i
4 bnj1001.13 D = ω
5 bnj1001.27 Could not format ( ( th /\ ch /\ ta /\ et ) -> ch" ) : No typesetting found for |- ( ( th /\ ch /\ ta /\ et ) -> ch" ) with typecode |-
6 3 simplbi η i n
7 6 bnj708 θ χ τ η i n
8 1 bnj1232 χ n D
9 8 bnj706 θ χ τ η n D
10 4 bnj923 n D n ω
11 9 10 syl θ χ τ η n ω
12 elnn i n n ω i ω
13 7 11 12 syl2anc θ χ τ η i ω
14 2 simp3bi τ p = suc n
15 14 bnj707 θ χ τ η p = suc n
16 nnord n ω Ord n
17 ordsucelsuc Ord n i n suc i suc n
18 10 16 17 3syl n D i n suc i suc n
19 18 biimpa n D i n suc i suc n
20 eleq2 p = suc n suc i p suc i suc n
21 19 20 anim12i n D i n p = suc n suc i suc n suc i p suc i suc n
22 9 7 15 21 syl21anc θ χ τ η suc i suc n suc i p suc i suc n
23 bianir suc i suc n suc i p suc i suc n suc i p
24 22 23 syl θ χ τ η suc i p
25 5 13 24 3jca Could not format ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) : No typesetting found for |- ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) with typecode |-