Metamath Proof Explorer


Theorem bnj1006

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1006.1 φ f = pred X A R
bnj1006.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj1006.3 χ n D f Fn n φ ψ
bnj1006.4 θ R FrSe A X A y trCl X A R z pred y A R
bnj1006.5 τ m ω n = suc m p = suc n
bnj1006.6 η i n y f i
bnj1006.7 No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
bnj1006.8 No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
bnj1006.9 No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
bnj1006.10 No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
bnj1006.11 No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
bnj1006.12 No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
bnj1006.13 D = ω
bnj1006.15 C = y f m pred y A R
bnj1006.16 G = f n C
bnj1006.28 No typesetting found for |- ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) with typecode |-
Assertion bnj1006 θ χ τ η pred y A R G suc i

Proof

Step Hyp Ref Expression
1 bnj1006.1 φ f = pred X A R
2 bnj1006.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj1006.3 χ n D f Fn n φ ψ
4 bnj1006.4 θ R FrSe A X A y trCl X A R z pred y A R
5 bnj1006.5 τ m ω n = suc m p = suc n
6 bnj1006.6 η i n y f i
7 bnj1006.7 Could not format ( ph' <-> [. p / n ]. ph ) : No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
8 bnj1006.8 Could not format ( ps' <-> [. p / n ]. ps ) : No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
9 bnj1006.9 Could not format ( ch' <-> [. p / n ]. ch ) : No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
10 bnj1006.10 Could not format ( ph" <-> [. G / f ]. ph' ) : No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
11 bnj1006.11 Could not format ( ps" <-> [. G / f ]. ps' ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
12 bnj1006.12 Could not format ( ch" <-> [. G / f ]. ch' ) : No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
13 bnj1006.13 D = ω
14 bnj1006.15 C = y f m pred y A R
15 bnj1006.16 G = f n C
16 bnj1006.28 Could not format ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) : No typesetting found for |- ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) with typecode |-
17 6 simprbi η y f i
18 17 bnj708 θ χ τ η y f i
19 bnj253 R FrSe A X A y trCl X A R z pred y A R R FrSe A X A y trCl X A R z pred y A R
20 19 simp1bi R FrSe A X A y trCl X A R z pred y A R R FrSe A X A
21 4 20 sylbi θ R FrSe A X A
22 21 bnj705 θ χ τ η R FrSe A X A
23 bnj643 θ χ τ η χ
24 3simpc m ω n = suc m p = suc n n = suc m p = suc n
25 5 24 sylbi τ n = suc m p = suc n
26 25 bnj707 θ χ τ η n = suc m p = suc n
27 3anass χ n = suc m p = suc n χ n = suc m p = suc n
28 23 26 27 sylanbrc θ χ τ η χ n = suc m p = suc n
29 biid f Fn n φ ψ f Fn n φ ψ
30 biid n D p = suc n m n n D p = suc n m n
31 1 2 3 13 14 29 30 bnj969 R FrSe A X A χ n = suc m p = suc n C V
32 22 28 31 syl2anc θ χ τ η C V
33 3 bnj1235 χ f Fn n
34 33 bnj706 θ χ τ η f Fn n
35 5 simp3bi τ p = suc n
36 35 bnj707 θ χ τ η p = suc n
37 6 simplbi η i n
38 37 bnj708 θ χ τ η i n
39 32 34 36 38 bnj951 θ χ τ η C V f Fn n p = suc n i n
40 15 bnj945 C V f Fn n p = suc n i n G i = f i
41 39 40 syl θ χ τ η G i = f i
42 18 41 eleqtrrd θ χ τ η y G i
43 16 anim1i Could not format ( ( ( th /\ ch /\ ta /\ et ) /\ y e. ( G ` i ) ) -> ( ( ch" /\ i e. _om /\ suc i e. p ) /\ y e. ( G ` i ) ) ) : No typesetting found for |- ( ( ( th /\ ch /\ ta /\ et ) /\ y e. ( G ` i ) ) -> ( ( ch" /\ i e. _om /\ suc i e. p ) /\ y e. ( G ` i ) ) ) with typecode |-
44 df-bnj17 Could not format ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) <-> ( ( ch" /\ i e. _om /\ suc i e. p ) /\ y e. ( G ` i ) ) ) : No typesetting found for |- ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) <-> ( ( ch" /\ i e. _om /\ suc i e. p ) /\ y e. ( G ` i ) ) ) with typecode |-
45 43 44 sylibr Could not format ( ( ( th /\ ch /\ ta /\ et ) /\ y e. ( G ` i ) ) -> ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) : No typesetting found for |- ( ( ( th /\ ch /\ ta /\ et ) /\ y e. ( G ` i ) ) -> ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) ) with typecode |-
46 1 2 3 7 8 9 10 11 12 14 15 bnj999 Could not format ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ ( G ` suc i ) ) : No typesetting found for |- ( ( ch" /\ i e. _om /\ suc i e. p /\ y e. ( G ` i ) ) -> _pred ( y , A , R ) C_ ( G ` suc i ) ) with typecode |-
47 45 46 syl θ χ τ η y G i pred y A R G suc i
48 42 47 mpdan θ χ τ η pred y A R G suc i