Metamath Proof Explorer


Theorem bnj1014

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1014.1 φ f = pred X A R
bnj1014.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj1014.13 D = ω
bnj1014.14 B = f | n D f Fn n φ ψ
Assertion bnj1014 g B j dom g g j trCl X A R

Proof

Step Hyp Ref Expression
1 bnj1014.1 φ f = pred X A R
2 bnj1014.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj1014.13 D = ω
4 bnj1014.14 B = f | n D f Fn n φ ψ
5 nfcv _ i D
6 1 2 bnj911 f Fn n φ ψ i f Fn n φ ψ
7 6 nf5i i f Fn n φ ψ
8 5 7 nfrex i n D f Fn n φ ψ
9 8 nfab _ i f | n D f Fn n φ ψ
10 4 9 nfcxfr _ i B
11 10 nfcri i g B
12 nfv i j dom g
13 11 12 nfan i g B j dom g
14 nfv i g j trCl X A R
15 13 14 nfim i g B j dom g g j trCl X A R
16 15 nf5ri g B j dom g g j trCl X A R i g B j dom g g j trCl X A R
17 eleq1w j = i j dom g i dom g
18 17 anbi2d j = i g B j dom g g B i dom g
19 fveq2 j = i g j = g i
20 19 sseq1d j = i g j trCl X A R g i trCl X A R
21 18 20 imbi12d j = i g B j dom g g j trCl X A R g B i dom g g i trCl X A R
22 21 equcoms i = j g B j dom g g j trCl X A R g B i dom g g i trCl X A R
23 4 bnj1317 g B f g B
24 23 nf5i f g B
25 nfv f i dom g
26 24 25 nfan f g B i dom g
27 nfv f g i trCl X A R
28 26 27 nfim f g B i dom g g i trCl X A R
29 eleq1w f = g f B g B
30 dmeq f = g dom f = dom g
31 30 eleq2d f = g i dom f i dom g
32 29 31 anbi12d f = g f B i dom f g B i dom g
33 fveq1 f = g f i = g i
34 33 sseq1d f = g f i trCl X A R g i trCl X A R
35 32 34 imbi12d f = g f B i dom f f i trCl X A R g B i dom g g i trCl X A R
36 ssiun2 i dom f f i i dom f f i
37 ssiun2 f B i dom f f i f B i dom f f i
38 1 2 3 4 bnj882 trCl X A R = f B i dom f f i
39 37 38 sseqtrrdi f B i dom f f i trCl X A R
40 36 39 sylan9ssr f B i dom f f i trCl X A R
41 28 35 40 chvarfv g B i dom g g i trCl X A R
42 22 41 speivw i g B j dom g g j trCl X A R
43 16 42 bnj1131 g B j dom g g j trCl X A R