Metamath Proof Explorer


Theorem bnj1015

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1015.1 φ f = pred X A R
bnj1015.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj1015.13 D = ω
bnj1015.14 B = f | n D f Fn n φ ψ
bnj1015.15 G V
bnj1015.16 J V
Assertion bnj1015 G B J dom G G J trCl X A R

Proof

Step Hyp Ref Expression
1 bnj1015.1 φ f = pred X A R
2 bnj1015.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj1015.13 D = ω
4 bnj1015.14 B = f | n D f Fn n φ ψ
5 bnj1015.15 G V
6 bnj1015.16 J V
7 6 elexi J V
8 eleq1 j = J j dom G J dom G
9 8 anbi2d j = J G B j dom G G B J dom G
10 fveq2 j = J G j = G J
11 10 sseq1d j = J G j trCl X A R G J trCl X A R
12 9 11 imbi12d j = J G B j dom G G j trCl X A R G B J dom G G J trCl X A R
13 5 elexi G V
14 eleq1 g = G g B G B
15 dmeq g = G dom g = dom G
16 15 eleq2d g = G j dom g j dom G
17 14 16 anbi12d g = G g B j dom g G B j dom G
18 fveq1 g = G g j = G j
19 18 sseq1d g = G g j trCl X A R G j trCl X A R
20 17 19 imbi12d g = G g B j dom g g j trCl X A R G B j dom G G j trCl X A R
21 1 2 3 4 bnj1014 g B j dom g g j trCl X A R
22 13 20 21 vtocl G B j dom G G j trCl X A R
23 7 12 22 vtocl G B J dom G G J trCl X A R