Metamath Proof Explorer


Theorem bnj1020

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1020.1 φ f = pred X A R
bnj1020.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj1020.3 χ n D f Fn n φ ψ
bnj1020.4 θ R FrSe A X A y trCl X A R z pred y A R
bnj1020.5 τ m ω n = suc m p = suc n
bnj1020.6 η i n y f i
bnj1020.7 No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
bnj1020.8 No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
bnj1020.9 No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
bnj1020.10 No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
bnj1020.11 No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
bnj1020.12 No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
bnj1020.13 D = ω
bnj1020.14 B = f | n D f Fn n φ ψ
bnj1020.15 C = y f m pred y A R
bnj1020.16 G = f n C
bnj1020.26 No typesetting found for |- ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) with typecode |-
Assertion bnj1020 θ χ η p τ pred y A R trCl X A R

Proof

Step Hyp Ref Expression
1 bnj1020.1 φ f = pred X A R
2 bnj1020.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj1020.3 χ n D f Fn n φ ψ
4 bnj1020.4 θ R FrSe A X A y trCl X A R z pred y A R
5 bnj1020.5 τ m ω n = suc m p = suc n
6 bnj1020.6 η i n y f i
7 bnj1020.7 Could not format ( ph' <-> [. p / n ]. ph ) : No typesetting found for |- ( ph' <-> [. p / n ]. ph ) with typecode |-
8 bnj1020.8 Could not format ( ps' <-> [. p / n ]. ps ) : No typesetting found for |- ( ps' <-> [. p / n ]. ps ) with typecode |-
9 bnj1020.9 Could not format ( ch' <-> [. p / n ]. ch ) : No typesetting found for |- ( ch' <-> [. p / n ]. ch ) with typecode |-
10 bnj1020.10 Could not format ( ph" <-> [. G / f ]. ph' ) : No typesetting found for |- ( ph" <-> [. G / f ]. ph' ) with typecode |-
11 bnj1020.11 Could not format ( ps" <-> [. G / f ]. ps' ) : No typesetting found for |- ( ps" <-> [. G / f ]. ps' ) with typecode |-
12 bnj1020.12 Could not format ( ch" <-> [. G / f ]. ch' ) : No typesetting found for |- ( ch" <-> [. G / f ]. ch' ) with typecode |-
13 bnj1020.13 D = ω
14 bnj1020.14 B = f | n D f Fn n φ ψ
15 bnj1020.15 C = y f m pred y A R
16 bnj1020.16 G = f n C
17 bnj1020.26 Could not format ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) : No typesetting found for |- ( ch" <-> ( p e. D /\ G Fn p /\ ph" /\ ps" ) ) with typecode |-
18 bnj1019 p θ χ τ η θ χ η p τ
19 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 bnj998 Could not format ( ( th /\ ch /\ ta /\ et ) -> ch" ) : No typesetting found for |- ( ( th /\ ch /\ ta /\ et ) -> ch" ) with typecode |-
20 3 5 6 13 19 bnj1001 Could not format ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) : No typesetting found for |- ( ( th /\ ch /\ ta /\ et ) -> ( ch" /\ i e. _om /\ suc i e. p ) ) with typecode |-
21 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 20 bnj1006 θ χ τ η pred y A R G suc i
22 21 exlimiv p θ χ τ η pred y A R G suc i
23 18 22 sylbir θ χ η p τ pred y A R G suc i
24 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 19 20 bnj1018 θ χ η p τ G suc i trCl X A R
25 23 24 sstrd θ χ η p τ pred y A R trCl X A R