Metamath Proof Explorer


Theorem bnj1021

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1021.1 φ f = pred X A R
bnj1021.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj1021.3 χ n D f Fn n φ ψ
bnj1021.4 θ R FrSe A X A y trCl X A R z pred y A R
bnj1021.5 τ m ω n = suc m p = suc n
bnj1021.6 η i n y f i
bnj1021.13 D = ω
bnj1021.14 B = f | n D f Fn n φ ψ
Assertion bnj1021 f n i m θ θ χ η p τ

Proof

Step Hyp Ref Expression
1 bnj1021.1 φ f = pred X A R
2 bnj1021.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj1021.3 χ n D f Fn n φ ψ
4 bnj1021.4 θ R FrSe A X A y trCl X A R z pred y A R
5 bnj1021.5 τ m ω n = suc m p = suc n
6 bnj1021.6 η i n y f i
7 bnj1021.13 D = ω
8 bnj1021.14 B = f | n D f Fn n φ ψ
9 1 2 3 4 5 6 7 8 bnj996 f n i m p θ χ τ η
10 anclb θ χ τ η θ θ χ τ η
11 bnj252 θ χ τ η θ χ τ η
12 11 imbi2i θ θ χ τ η θ θ χ τ η
13 10 12 bitr4i θ χ τ η θ θ χ τ η
14 13 2exbii m p θ χ τ η m p θ θ χ τ η
15 14 3exbii f n i m p θ χ τ η f n i m p θ θ χ τ η
16 9 15 mpbi f n i m p θ θ χ τ η
17 19.37v p θ θ χ τ η θ p θ χ τ η
18 bnj1019 p θ χ τ η θ χ η p τ
19 18 imbi2i θ p θ χ τ η θ θ χ η p τ
20 17 19 bitri p θ θ χ τ η θ θ χ η p τ
21 20 2exbii i m p θ θ χ τ η i m θ θ χ η p τ
22 21 2exbii f n i m p θ θ χ τ η f n i m θ θ χ η p τ
23 16 22 mpbi f n i m θ θ χ η p τ