Metamath Proof Explorer


Theorem bnj1023

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1023.1 x φ ψ
bnj1023.2 ψ χ
Assertion bnj1023 x φ χ

Proof

Step Hyp Ref Expression
1 bnj1023.1 x φ ψ
2 bnj1023.2 ψ χ
3 2 a1i φ ψ ψ χ
4 3 ax-gen x φ ψ ψ χ
5 exintr x φ ψ ψ χ x φ ψ x φ ψ ψ χ
6 4 1 5 mp2 x φ ψ ψ χ
7 pm3.33 φ ψ ψ χ φ χ
8 6 7 bnj101 x φ χ