Metamath Proof Explorer


Theorem bnj1034

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1034.1 φ f = pred X A R
bnj1034.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj1034.3 χ n D f Fn n φ ψ
bnj1034.4 θ R FrSe A X A
bnj1034.5 τ B V TrFo B A R pred X A R B
bnj1034.7 ζ i n z f i
bnj1034.8 D = ω
bnj1034.9 K = f | n D f Fn n φ ψ
bnj1034.10 f n i θ τ χ ζ z B
Assertion bnj1034 θ τ trCl X A R B

Proof

Step Hyp Ref Expression
1 bnj1034.1 φ f = pred X A R
2 bnj1034.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj1034.3 χ n D f Fn n φ ψ
4 bnj1034.4 θ R FrSe A X A
5 bnj1034.5 τ B V TrFo B A R pred X A R B
6 bnj1034.7 ζ i n z f i
7 bnj1034.8 D = ω
8 bnj1034.9 K = f | n D f Fn n φ ψ
9 bnj1034.10 f n i θ τ χ ζ z B
10 biid z trCl X A R z trCl X A R
11 1 2 3 4 5 10 6 7 8 9 bnj1033 θ τ trCl X A R B