Metamath Proof Explorer


Theorem bnj1039

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1039.1 ψ i ω suc i n f suc i = y f i pred y A R
bnj1039.2 No typesetting found for |- ( ps' <-> [. j / i ]. ps ) with typecode |-
Assertion bnj1039 Could not format assertion : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj1039.1 ψ i ω suc i n f suc i = y f i pred y A R
2 bnj1039.2 Could not format ( ps' <-> [. j / i ]. ps ) : No typesetting found for |- ( ps' <-> [. j / i ]. ps ) with typecode |-
3 vex j V
4 nfra1 i i ω suc i n f suc i = y f i pred y A R
5 1 4 nfxfr i ψ
6 3 5 sbcgfi [˙j / i]˙ ψ ψ
7 2 6 1 3bitri Could not format ( ps' <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-