Metamath Proof Explorer


Theorem bnj1049

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1049.1 ζ i n z f i
bnj1049.2 η θ τ χ ζ z B
Assertion bnj1049 i n η i η

Proof

Step Hyp Ref Expression
1 bnj1049.1 ζ i n z f i
2 bnj1049.2 η θ τ χ ζ z B
3 df-ral i n η i i n η
4 2 imbi2i i n η i n θ τ χ ζ z B
5 impexp i n θ τ χ ζ z B i n θ τ χ ζ z B
6 4 5 bitr4i i n η i n θ τ χ ζ z B
7 1 simplbi ζ i n
8 7 bnj708 θ τ χ ζ i n
9 8 pm4.71ri θ τ χ ζ i n θ τ χ ζ
10 9 bicomi i n θ τ χ ζ θ τ χ ζ
11 10 imbi1i i n θ τ χ ζ z B θ τ χ ζ z B
12 6 11 bitri i n η θ τ χ ζ z B
13 12 2 bitr4i i n η η
14 13 albii i i n η i η
15 3 14 bitri i n η i η