Metamath Proof Explorer


Theorem bnj1052

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1052.1 φ f = pred X A R
bnj1052.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj1052.3 χ n D f Fn n φ ψ
bnj1052.4 θ R FrSe A X A
bnj1052.5 τ B V TrFo B A R pred X A R B
bnj1052.6 ζ i n z f i
bnj1052.7 D = ω
bnj1052.8 K = f | n D f Fn n φ ψ
bnj1052.9 η θ τ χ ζ z B
bnj1052.10 ρ j n j E i [˙j / i]˙ η
bnj1052.37 θ τ χ ζ E Fr n i n ρ η
Assertion bnj1052 θ τ trCl X A R B

Proof

Step Hyp Ref Expression
1 bnj1052.1 φ f = pred X A R
2 bnj1052.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj1052.3 χ n D f Fn n φ ψ
4 bnj1052.4 θ R FrSe A X A
5 bnj1052.5 τ B V TrFo B A R pred X A R B
6 bnj1052.6 ζ i n z f i
7 bnj1052.7 D = ω
8 bnj1052.8 K = f | n D f Fn n φ ψ
9 bnj1052.9 η θ τ χ ζ z B
10 bnj1052.10 ρ j n j E i [˙j / i]˙ η
11 bnj1052.37 θ τ χ ζ E Fr n i n ρ η
12 19.23vv n i θ τ χ ζ z B n i θ τ χ ζ z B
13 12 albii f n i θ τ χ ζ z B f n i θ τ χ ζ z B
14 19.23v f n i θ τ χ ζ z B f n i θ τ χ ζ z B
15 13 14 bitri f n i θ τ χ ζ z B f n i θ τ χ ζ z B
16 vex n V
17 16 10 bnj110 E Fr n i n ρ η i n η
18 6 9 bnj1049 i n η i η
19 17 18 sylib E Fr n i n ρ η i η
20 19 19.21bi E Fr n i n ρ η η
21 20 9 sylib E Fr n i n ρ η θ τ χ ζ z B
22 11 21 mpcom θ τ χ ζ z B
23 22 gen2 n i θ τ χ ζ z B
24 15 23 mpgbi f n i θ τ χ ζ z B
25 1 2 3 4 5 6 7 8 24 bnj1034 θ τ trCl X A R B