Metamath Proof Explorer


Theorem bnj1053

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1053.1 φ f = pred X A R
bnj1053.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj1053.3 χ n D f Fn n φ ψ
bnj1053.4 θ R FrSe A X A
bnj1053.5 τ B V TrFo B A R pred X A R B
bnj1053.6 ζ i n z f i
bnj1053.7 D = ω
bnj1053.8 K = f | n D f Fn n φ ψ
bnj1053.9 η θ τ χ ζ z B
bnj1053.10 ρ j n j E i [˙j / i]˙ η
bnj1053.37 θ τ χ ζ i n ρ η
Assertion bnj1053 θ τ trCl X A R B

Proof

Step Hyp Ref Expression
1 bnj1053.1 φ f = pred X A R
2 bnj1053.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj1053.3 χ n D f Fn n φ ψ
4 bnj1053.4 θ R FrSe A X A
5 bnj1053.5 τ B V TrFo B A R pred X A R B
6 bnj1053.6 ζ i n z f i
7 bnj1053.7 D = ω
8 bnj1053.8 K = f | n D f Fn n φ ψ
9 bnj1053.9 η θ τ χ ζ z B
10 bnj1053.10 ρ j n j E i [˙j / i]˙ η
11 bnj1053.37 θ τ χ ζ i n ρ η
12 7 bnj923 n D n ω
13 nnord n ω Ord n
14 ordfr Ord n E Fr n
15 12 13 14 3syl n D E Fr n
16 3 15 bnj769 χ E Fr n
17 16 bnj707 θ τ χ ζ E Fr n
18 17 11 jca θ τ χ ζ E Fr n i n ρ η
19 1 2 3 4 5 6 7 8 9 10 18 bnj1052 θ τ trCl X A R B