Metamath Proof Explorer


Theorem bnj1083

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1083.3 χ n D f Fn n φ ψ
bnj1083.8 K = f | n D f Fn n φ ψ
Assertion bnj1083 f K n χ

Proof

Step Hyp Ref Expression
1 bnj1083.3 χ n D f Fn n φ ψ
2 bnj1083.8 K = f | n D f Fn n φ ψ
3 df-rex n D f Fn n φ ψ n n D f Fn n φ ψ
4 2 abeq2i f K n D f Fn n φ ψ
5 bnj252 n D f Fn n φ ψ n D f Fn n φ ψ
6 1 5 bitri χ n D f Fn n φ ψ
7 6 exbii n χ n n D f Fn n φ ψ
8 3 4 7 3bitr4i f K n χ