Metamath Proof Explorer


Theorem bnj1096

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1096.1 φ x φ
bnj1096.2 ψ χ θ τ φ
Assertion bnj1096 ψ x ψ

Proof

Step Hyp Ref Expression
1 bnj1096.1 φ x φ
2 bnj1096.2 ψ χ θ τ φ
3 ax-5 χ x χ
4 ax-5 θ x θ
5 ax-5 τ x τ
6 3 4 5 1 bnj982 χ θ τ φ x χ θ τ φ
7 2 6 hbxfrbi ψ x ψ