Step |
Hyp |
Ref |
Expression |
1 |
|
bnj110.1 |
|
2 |
|
bnj110.2 |
|
3 |
|
ralnex |
|
4 |
|
sbcng |
|
5 |
4
|
elv |
|
6 |
5
|
bicomi |
|
7 |
6
|
ralbii |
|
8 |
3 7
|
bitr3i |
|
9 |
|
df-rab |
|
10 |
9
|
eleq2i |
|
11 |
|
df-sbc |
|
12 |
|
sbcan |
|
13 |
|
sbcel1v |
|
14 |
13
|
anbi1i |
|
15 |
12 14
|
bitri |
|
16 |
11 15
|
bitr3i |
|
17 |
10 16
|
bitri |
|
18 |
17
|
simprbi |
|
19 |
8 18
|
mprgbir |
|
20 |
1
|
rabex |
|
21 |
20
|
biantrur |
|
22 |
|
rexnal |
|
23 |
|
rabn0 |
|
24 |
|
ssrab2 |
|
25 |
24
|
biantrur |
|
26 |
23 25
|
bitr3i |
|
27 |
22 26
|
bitr3i |
|
28 |
|
fri |
|
29 |
21 27 28
|
syl2anb |
|
30 |
|
eqid |
|
31 |
30
|
bnj23 |
|
32 |
|
df-ral |
|
33 |
32
|
sbcbii |
|
34 |
|
sbcal |
|
35 |
|
sbcimg |
|
36 |
35
|
elv |
|
37 |
|
vex |
|
38 |
|
nfv |
|
39 |
37 38
|
sbcgfi |
|
40 |
|
sbcimg |
|
41 |
40
|
elv |
|
42 |
|
sbcbr2g |
|
43 |
42
|
elv |
|
44 |
37
|
csbvargi |
|
45 |
44
|
breq2i |
|
46 |
43 45
|
bitri |
|
47 |
|
nfsbc1v |
|
48 |
37 47
|
sbcgfi |
|
49 |
46 48
|
imbi12i |
|
50 |
41 49
|
bitri |
|
51 |
39 50
|
imbi12i |
|
52 |
36 51
|
bitri |
|
53 |
52
|
albii |
|
54 |
34 53
|
bitri |
|
55 |
33 54
|
bitri |
|
56 |
2
|
sbcbii |
|
57 |
|
df-ral |
|
58 |
55 56 57
|
3bitr4i |
|
59 |
31 58
|
sylibr |
|
60 |
29 59
|
bnj31 |
|
61 |
|
nfv |
|
62 |
|
nfsbc1v |
|
63 |
|
nfsbc1v |
|
64 |
62 63
|
nfim |
|
65 |
|
sbceq1a |
|
66 |
|
sbceq1a |
|
67 |
65 66
|
imbi12d |
|
68 |
61 64 67
|
cbvralw |
|
69 |
|
elrabi |
|
70 |
69
|
imim1i |
|
71 |
70
|
ralimi2 |
|
72 |
68 71
|
sylbi |
|
73 |
|
rexim |
|
74 |
72 73
|
syl |
|
75 |
60 74
|
mpan9 |
|
76 |
75
|
an32s |
|
77 |
19 76
|
mto |
|
78 |
|
iman |
|
79 |
77 78
|
mpbir |
|