Metamath Proof Explorer


Theorem bnj1109

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1109.1 x A B φ ψ
bnj1109.2 A = B φ ψ
Assertion bnj1109 x φ ψ

Proof

Step Hyp Ref Expression
1 bnj1109.1 x A B φ ψ
2 bnj1109.2 A = B φ ψ
3 2 ex A = B φ ψ
4 3 a1i A B φ ψ A = B φ ψ
5 4 ax-gen x A B φ ψ A = B φ ψ
6 impexp A B φ ψ A B φ ψ
7 6 exbii x A B φ ψ x A B φ ψ
8 1 7 mpbi x A B φ ψ
9 exintr x A B φ ψ A = B φ ψ x A B φ ψ x A B φ ψ A = B φ ψ
10 5 8 9 mp2 x A B φ ψ A = B φ ψ
11 exancom x A B φ ψ A = B φ ψ x A = B φ ψ A B φ ψ
12 10 11 mpbi x A = B φ ψ A B φ ψ
13 df-ne A B ¬ A = B
14 13 imbi1i A B φ ψ ¬ A = B φ ψ
15 pm2.61 A = B φ ψ ¬ A = B φ ψ φ ψ
16 15 imp A = B φ ψ ¬ A = B φ ψ φ ψ
17 14 16 sylan2b A = B φ ψ A B φ ψ φ ψ
18 12 17 bnj101 x φ ψ