Metamath Proof Explorer


Theorem bnj1112

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1112.1 ψ i ω suc i n f suc i = y f i pred y A R
Assertion bnj1112 ψ j j ω suc j n f suc j = y f j pred y A R

Proof

Step Hyp Ref Expression
1 bnj1112.1 ψ i ω suc i n f suc i = y f i pred y A R
2 1 bnj115 ψ i i ω suc i n f suc i = y f i pred y A R
3 eleq1w i = j i ω j ω
4 suceq i = j suc i = suc j
5 4 eleq1d i = j suc i n suc j n
6 3 5 anbi12d i = j i ω suc i n j ω suc j n
7 4 fveq2d i = j f suc i = f suc j
8 fveq2 i = j f i = f j
9 8 bnj1113 i = j y f i pred y A R = y f j pred y A R
10 7 9 eqeq12d i = j f suc i = y f i pred y A R f suc j = y f j pred y A R
11 6 10 imbi12d i = j i ω suc i n f suc i = y f i pred y A R j ω suc j n f suc j = y f j pred y A R
12 11 cbvalvw i i ω suc i n f suc i = y f i pred y A R j j ω suc j n f suc j = y f j pred y A R
13 2 12 bitri ψ j j ω suc j n f suc j = y f j pred y A R