Metamath Proof Explorer


Theorem bnj1123

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1123.4 ψ i ω suc i n f suc i = y f i pred y A R
bnj1123.3 K = f | n D f Fn n φ ψ
bnj1123.1 η f K i dom f f i B
bnj1123.2 No typesetting found for |- ( et' <-> [. j / i ]. et ) with typecode |-
Assertion bnj1123 Could not format assertion : No typesetting found for |- ( et' <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj1123.4 ψ i ω suc i n f suc i = y f i pred y A R
2 bnj1123.3 K = f | n D f Fn n φ ψ
3 bnj1123.1 η f K i dom f f i B
4 bnj1123.2 Could not format ( et' <-> [. j / i ]. et ) : No typesetting found for |- ( et' <-> [. j / i ]. et ) with typecode |-
5 3 sbcbii [˙j / i]˙ η [˙j / i]˙ f K i dom f f i B
6 nfcv _ i D
7 nfv i f Fn n
8 nfv i φ
9 1 bnj1095 ψ i ψ
10 9 nf5i i ψ
11 7 8 10 nf3an i f Fn n φ ψ
12 6 11 nfrex i n D f Fn n φ ψ
13 12 nfab _ i f | n D f Fn n φ ψ
14 2 13 nfcxfr _ i K
15 14 nfcri i f K
16 nfv i j dom f
17 15 16 nfan i f K j dom f
18 nfv i f j B
19 17 18 nfim i f K j dom f f j B
20 eleq1w i = j i dom f j dom f
21 20 anbi2d i = j f K i dom f f K j dom f
22 fveq2 i = j f i = f j
23 22 sseq1d i = j f i B f j B
24 21 23 imbi12d i = j f K i dom f f i B f K j dom f f j B
25 19 24 sbciegf j V [˙j / i]˙ f K i dom f f i B f K j dom f f j B
26 25 elv [˙j / i]˙ f K i dom f f i B f K j dom f f j B
27 4 5 26 3bitri Could not format ( et' <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) ) : No typesetting found for |- ( et' <-> ( ( f e. K /\ j e. dom f ) -> ( f ` j ) C_ B ) ) with typecode |-