Metamath Proof Explorer


Theorem bnj1136

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1136.1 B=predXARytrClXARtrClyAR
bnj1136.2 θRFrSeAXA
bnj1136.3 τBVTrFoBARpredXARB
Assertion bnj1136 RFrSeAXAtrClXAR=B

Proof

Step Hyp Ref Expression
1 bnj1136.1 B=predXARytrClXARtrClyAR
2 bnj1136.2 θRFrSeAXA
3 bnj1136.3 τBVTrFoBARpredXARB
4 2 biimpri RFrSeAXAθ
5 bnj1148 RFrSeAXApredXARV
6 bnj893 RFrSeAXAtrClXARV
7 simp1 RFrSeAXAytrClXARRFrSeA
8 bnj1127 ytrClXARyA
9 8 3ad2ant3 RFrSeAXAytrClXARyA
10 bnj893 RFrSeAyAtrClyARV
11 7 9 10 syl2anc RFrSeAXAytrClXARtrClyARV
12 11 3expia RFrSeAXAytrClXARtrClyARV
13 12 ralrimiv RFrSeAXAytrClXARtrClyARV
14 iunexg trClXARVytrClXARtrClyARVytrClXARtrClyARV
15 6 13 14 syl2anc RFrSeAXAytrClXARtrClyARV
16 5 15 bnj1149 RFrSeAXApredXARytrClXARtrClyARV
17 1 16 eqeltrid RFrSeAXABV
18 1 bnj1137 RFrSeAXATrFoBAR
19 1 bnj931 predXARB
20 19 a1i RFrSeAXApredXARB
21 17 18 20 3 syl3anbrc RFrSeAXAτ
22 2 3 bnj1124 θτtrClXARB
23 4 21 22 syl2anc RFrSeAXAtrClXARB
24 bnj906 RFrSeAXApredXARtrClXAR
25 bnj1125 RFrSeAXAytrClXARtrClyARtrClXAR
26 25 3expia RFrSeAXAytrClXARtrClyARtrClXAR
27 26 ralrimiv RFrSeAXAytrClXARtrClyARtrClXAR
28 ss2iun ytrClXARtrClyARtrClXARytrClXARtrClyARytrClXARtrClXAR
29 bnj1143 ytrClXARtrClXARtrClXAR
30 28 29 sstrdi ytrClXARtrClyARtrClXARytrClXARtrClyARtrClXAR
31 27 30 syl RFrSeAXAytrClXARtrClyARtrClXAR
32 24 31 unssd RFrSeAXApredXARytrClXARtrClyARtrClXAR
33 1 32 eqsstrid RFrSeAXABtrClXAR
34 23 33 eqssd RFrSeAXAtrClXAR=B