Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1136.1 | |
|
bnj1136.2 | |
||
bnj1136.3 | |
||
Assertion | bnj1136 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1136.1 | |
|
2 | bnj1136.2 | |
|
3 | bnj1136.3 | |
|
4 | 2 | biimpri | |
5 | bnj1148 | |
|
6 | bnj893 | |
|
7 | simp1 | |
|
8 | bnj1127 | |
|
9 | 8 | 3ad2ant3 | |
10 | bnj893 | |
|
11 | 7 9 10 | syl2anc | |
12 | 11 | 3expia | |
13 | 12 | ralrimiv | |
14 | iunexg | |
|
15 | 6 13 14 | syl2anc | |
16 | 5 15 | bnj1149 | |
17 | 1 16 | eqeltrid | |
18 | 1 | bnj1137 | |
19 | 1 | bnj931 | |
20 | 19 | a1i | |
21 | 17 18 20 3 | syl3anbrc | |
22 | 2 3 | bnj1124 | |
23 | 4 21 22 | syl2anc | |
24 | bnj906 | |
|
25 | bnj1125 | |
|
26 | 25 | 3expia | |
27 | 26 | ralrimiv | |
28 | ss2iun | |
|
29 | bnj1143 | |
|
30 | 28 29 | sstrdi | |
31 | 27 30 | syl | |
32 | 24 31 | unssd | |
33 | 1 32 | eqsstrid | |
34 | 23 33 | eqssd | |