Metamath Proof Explorer


Theorem bnj1143

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1143 x A B B

Proof

Step Hyp Ref Expression
1 df-iun x A B = y | x A y B
2 notnotb A = ¬ ¬ A =
3 neq0 ¬ A = x x A
4 2 3 xchbinx A = ¬ x x A
5 df-rex x A z B x x A z B
6 exsimpl x x A z B x x A
7 5 6 sylbi x A z B x x A
8 7 con3i ¬ x x A ¬ x A z B
9 4 8 sylbi A = ¬ x A z B
10 9 alrimiv A = z ¬ x A z B
11 notnotb y | x A y B = ¬ ¬ y | x A y B =
12 neq0 ¬ x A B = z z x A B
13 1 eqeq1i x A B = y | x A y B =
14 13 notbii ¬ x A B = ¬ y | x A y B =
15 df-iun x A B = z | x A z B
16 15 eleq2i z x A B z z | x A z B
17 16 exbii z z x A B z z z | x A z B
18 12 14 17 3bitr3i ¬ y | x A y B = z z z | x A z B
19 11 18 xchbinx y | x A y B = ¬ z z z | x A z B
20 alnex z ¬ z z | x A z B ¬ z z z | x A z B
21 abid z z | x A z B x A z B
22 21 notbii ¬ z z | x A z B ¬ x A z B
23 22 albii z ¬ z z | x A z B z ¬ x A z B
24 19 20 23 3bitr2i y | x A y B = z ¬ x A z B
25 10 24 sylibr A = y | x A y B =
26 1 25 syl5eq A = x A B =
27 0ss B
28 26 27 eqsstrdi A = x A B B
29 iunconst A x A B = B
30 eqimss x A B = B x A B B
31 29 30 syl A x A B B
32 28 31 pm2.61ine x A B B