Metamath Proof Explorer


Theorem bnj1148

Description: Property of _pred . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1148 R FrSe A X A pred X A R V

Proof

Step Hyp Ref Expression
1 elisset X A x x = X
2 1 adantl R FrSe A X A x x = X
3 bnj93 R FrSe A x A pred x A R V
4 eleq1 x = X x A X A
5 4 anbi2d x = X R FrSe A x A R FrSe A X A
6 bnj602 x = X pred x A R = pred X A R
7 6 eleq1d x = X pred x A R V pred X A R V
8 5 7 imbi12d x = X R FrSe A x A pred x A R V R FrSe A X A pred X A R V
9 3 8 mpbii x = X R FrSe A X A pred X A R V
10 2 9 bnj593 R FrSe A X A x R FrSe A X A pred X A R V
11 10 bnj937 R FrSe A X A R FrSe A X A pred X A R V
12 11 pm2.43i R FrSe A X A pred X A R V