Metamath Proof Explorer


Theorem bnj1172

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1172.3 C = trCl X A R B
bnj1172.96 z w φ ψ φ ψ z C θ w R z ¬ w B
bnj1172.113 φ ψ z C θ w A
Assertion bnj1172 z w φ ψ z B w A w R z ¬ w B

Proof

Step Hyp Ref Expression
1 bnj1172.3 C = trCl X A R B
2 bnj1172.96 z w φ ψ φ ψ z C θ w R z ¬ w B
3 bnj1172.113 φ ψ z C θ w A
4 3 imbi1d φ ψ z C θ w R z ¬ w B w A w R z ¬ w B
5 4 pm5.32i φ ψ z C θ w R z ¬ w B φ ψ z C w A w R z ¬ w B
6 5 imbi2i φ ψ φ ψ z C θ w R z ¬ w B φ ψ φ ψ z C w A w R z ¬ w B
7 6 albii w φ ψ φ ψ z C θ w R z ¬ w B w φ ψ φ ψ z C w A w R z ¬ w B
8 7 exbii z w φ ψ φ ψ z C θ w R z ¬ w B z w φ ψ φ ψ z C w A w R z ¬ w B
9 2 8 mpbi z w φ ψ φ ψ z C w A w R z ¬ w B
10 simp3 φ ψ z C z C
11 10 1 eleqtrdi φ ψ z C z trCl X A R B
12 11 elin2d φ ψ z C z B
13 12 anim1i φ ψ z C w A w R z ¬ w B z B w A w R z ¬ w B
14 13 imim2i φ ψ φ ψ z C w A w R z ¬ w B φ ψ z B w A w R z ¬ w B
15 14 alimi w φ ψ φ ψ z C w A w R z ¬ w B w φ ψ z B w A w R z ¬ w B
16 9 15 bnj101 z w φ ψ z B w A w R z ¬ w B