Metamath Proof Explorer


Theorem bnj1173

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1173.3 C = trCl X A R B
bnj1173.5 θ R FrSe A X A z trCl X A R R FrSe A z A w A
bnj1173.9 φ ψ R FrSe A
bnj1173.17 φ ψ X A
Assertion bnj1173 φ ψ z C θ w A

Proof

Step Hyp Ref Expression
1 bnj1173.3 C = trCl X A R B
2 bnj1173.5 θ R FrSe A X A z trCl X A R R FrSe A z A w A
3 bnj1173.9 φ ψ R FrSe A
4 bnj1173.17 φ ψ X A
5 3simpc R FrSe A X A z trCl X A R R FrSe A z A w A R FrSe A z A w A
6 3 3adant3 φ ψ z C R FrSe A
7 4 3adant3 φ ψ z C X A
8 elin z trCl X A R B z trCl X A R z B
9 8 simplbi z trCl X A R B z trCl X A R
10 9 1 eleq2s z C z trCl X A R
11 10 3ad2ant3 φ ψ z C z trCl X A R
12 pm3.21 R FrSe A X A z trCl X A R R FrSe A z A w A R FrSe A z A w A R FrSe A X A z trCl X A R
13 6 7 11 12 syl3anc φ ψ z C R FrSe A z A w A R FrSe A z A w A R FrSe A X A z trCl X A R
14 bnj170 R FrSe A X A z trCl X A R R FrSe A z A w A R FrSe A z A w A R FrSe A X A z trCl X A R
15 13 14 syl6ibr φ ψ z C R FrSe A z A w A R FrSe A X A z trCl X A R R FrSe A z A w A
16 5 15 impbid2 φ ψ z C R FrSe A X A z trCl X A R R FrSe A z A w A R FrSe A z A w A
17 2 16 syl5bb φ ψ z C θ R FrSe A z A w A
18 bnj1147 trCl X A R A
19 18 11 bnj1213 φ ψ z C z A
20 6 19 jca φ ψ z C R FrSe A z A
21 20 biantrurd φ ψ z C w A R FrSe A z A w A
22 17 21 bitr4d φ ψ z C θ w A