Metamath Proof Explorer


Theorem bnj1175

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1175.3 C = trCl X A R B
bnj1175.4 χ R FrSe A X A z trCl X A R R FrSe A z A w A w R z
bnj1175.5 θ R FrSe A X A z trCl X A R R FrSe A z A w A
Assertion bnj1175 θ w R z w trCl X A R

Proof

Step Hyp Ref Expression
1 bnj1175.3 C = trCl X A R B
2 bnj1175.4 χ R FrSe A X A z trCl X A R R FrSe A z A w A w R z
3 bnj1175.5 θ R FrSe A X A z trCl X A R R FrSe A z A w A
4 bnj255 R FrSe A X A z trCl X A R R FrSe A z A w A w R z R FrSe A X A z trCl X A R R FrSe A z A w A w R z
5 df-bnj17 R FrSe A X A z trCl X A R R FrSe A z A w A w R z R FrSe A X A z trCl X A R R FrSe A z A w A w R z
6 2 4 5 3bitr2i χ R FrSe A X A z trCl X A R R FrSe A z A w A w R z
7 3 anbi1i θ w R z R FrSe A X A z trCl X A R R FrSe A z A w A w R z
8 6 7 bitr4i χ θ w R z
9 bnj1125 R FrSe A X A z trCl X A R trCl z A R trCl X A R
10 2 9 bnj835 χ trCl z A R trCl X A R
11 bnj906 R FrSe A z A pred z A R trCl z A R
12 2 11 bnj836 χ pred z A R trCl z A R
13 bnj1152 w pred z A R w A w R z
14 13 biimpri w A w R z w pred z A R
15 2 14 bnj837 χ w pred z A R
16 12 15 sseldd χ w trCl z A R
17 10 16 sseldd χ w trCl X A R
18 8 17 sylbir θ w R z w trCl X A R
19 18 ex θ w R z w trCl X A R