Metamath Proof Explorer


Theorem bnj1186

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1186.1 z w φ ψ z B w B ¬ w R z
Assertion bnj1186 φ ψ z B w B ¬ w R z

Proof

Step Hyp Ref Expression
1 bnj1186.1 z w φ ψ z B w B ¬ w R z
2 19.21v w φ ψ z B w B ¬ w R z φ ψ w z B w B ¬ w R z
3 2 exbii z w φ ψ z B w B ¬ w R z z φ ψ w z B w B ¬ w R z
4 1 3 mpbi z φ ψ w z B w B ¬ w R z
5 4 19.37iv φ ψ z w z B w B ¬ w R z
6 19.28v w z B w B ¬ w R z z B w w B ¬ w R z
7 6 exbii z w z B w B ¬ w R z z z B w w B ¬ w R z
8 5 7 sylib φ ψ z z B w w B ¬ w R z
9 df-ral w B ¬ w R z w w B ¬ w R z
10 9 anbi2i z B w B ¬ w R z z B w w B ¬ w R z
11 10 exbii z z B w B ¬ w R z z z B w w B ¬ w R z
12 8 11 sylibr φ ψ z z B w B ¬ w R z
13 df-rex z B w B ¬ w R z z z B w B ¬ w R z
14 12 13 sylibr φ ψ z B w B ¬ w R z