Metamath Proof Explorer


Theorem bnj1209

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1209.1 χ x B φ
bnj1209.2 θ χ x B φ
Assertion bnj1209 χ x θ

Proof

Step Hyp Ref Expression
1 bnj1209.1 χ x B φ
2 bnj1209.2 θ χ x B φ
3 1 bnj1196 χ x x B φ
4 3 ancli χ χ x x B φ
5 19.42v x χ x B φ χ x x B φ
6 4 5 sylibr χ x χ x B φ
7 3anass χ x B φ χ x B φ
8 2 7 bitri θ χ x B φ
9 6 8 bnj1198 χ x θ