Metamath Proof Explorer


Theorem bnj1228

Description: Existence of a minimal element in certain classes: if R is well-founded and set-like on A , then every nonempty subclass of A has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypothesis bnj1228.1 w B x w B
Assertion bnj1228 R FrSe A B A B x B y B ¬ y R x

Proof

Step Hyp Ref Expression
1 bnj1228.1 w B x w B
2 bnj69 R FrSe A B A B z B y B ¬ y R z
3 nfv z x B y B ¬ y R x
4 1 nfcii _ x B
5 4 nfcri x z B
6 nfv x ¬ y R z
7 4 6 nfralw x y B ¬ y R z
8 5 7 nfan x z B y B ¬ y R z
9 eleq1w x = z x B z B
10 breq2 x = z y R x y R z
11 10 notbid x = z ¬ y R x ¬ y R z
12 11 ralbidv x = z y B ¬ y R x y B ¬ y R z
13 9 12 anbi12d x = z x B y B ¬ y R x z B y B ¬ y R z
14 3 8 13 cbvexv1 x x B y B ¬ y R x z z B y B ¬ y R z
15 df-rex x B y B ¬ y R x x x B y B ¬ y R x
16 df-rex z B y B ¬ y R z z z B y B ¬ y R z
17 14 15 16 3bitr4i x B y B ¬ y R x z B y B ¬ y R z
18 2 17 sylibr R FrSe A B A B x B y B ¬ y R x