Metamath Proof Explorer


Theorem bnj1241

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1241.1 φ A B
bnj1241.2 ψ C = A
Assertion bnj1241 φ ψ C B

Proof

Step Hyp Ref Expression
1 bnj1241.1 φ A B
2 bnj1241.2 ψ C = A
3 2 eqcomd ψ A = C
4 3 adantl φ ψ A = C
5 1 adantr φ ψ A B
6 4 5 eqsstrrd φ ψ C B