Metamath Proof Explorer


Theorem bnj1245

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1245.1 B = d | d A x d pred x A R d
bnj1245.2 Y = x f pred x A R
bnj1245.3 C = f | d B f Fn d x d f x = G Y
bnj1245.4 D = dom g dom h
bnj1245.5 E = x D | g x h x
bnj1245.6 φ R FrSe A g C h C g D h D
bnj1245.7 ψ φ x E y E ¬ y R x
bnj1245.8 Z = x h pred x A R
bnj1245.9 K = h | d B h Fn d x d h x = G Z
Assertion bnj1245 φ dom h A

Proof

Step Hyp Ref Expression
1 bnj1245.1 B = d | d A x d pred x A R d
2 bnj1245.2 Y = x f pred x A R
3 bnj1245.3 C = f | d B f Fn d x d f x = G Y
4 bnj1245.4 D = dom g dom h
5 bnj1245.5 E = x D | g x h x
6 bnj1245.6 φ R FrSe A g C h C g D h D
7 bnj1245.7 ψ φ x E y E ¬ y R x
8 bnj1245.8 Z = x h pred x A R
9 bnj1245.9 K = h | d B h Fn d x d h x = G Z
10 6 bnj1247 φ h C
11 2 3 8 9 bnj1234 C = K
12 10 11 eleqtrdi φ h K
13 9 abeq2i h K d B h Fn d x d h x = G Z
14 13 bnj1238 h K d B h Fn d
15 14 bnj1196 h K d d B h Fn d
16 1 abeq2i d B d A x d pred x A R d
17 16 simplbi d B d A
18 fndm h Fn d dom h = d
19 17 18 bnj1241 d B h Fn d dom h A
20 15 19 bnj593 h K d dom h A
21 20 bnj937 h K dom h A
22 12 21 syl φ dom h A