Metamath Proof Explorer


Theorem bnj1256

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1256.1 B=d|dAxdpredxARd
bnj1256.2 Y=xfpredxAR
bnj1256.3 C=f|dBfFndxdfx=GY
bnj1256.4 D=domgdomh
bnj1256.5 E=xD|gxhx
bnj1256.6 φRFrSeAgChCgDhD
bnj1256.7 ψφxEyE¬yRx
Assertion bnj1256 φdBgFnd

Proof

Step Hyp Ref Expression
1 bnj1256.1 B=d|dAxdpredxARd
2 bnj1256.2 Y=xfpredxAR
3 bnj1256.3 C=f|dBfFndxdfx=GY
4 bnj1256.4 D=domgdomh
5 bnj1256.5 E=xD|gxhx
6 bnj1256.6 φRFrSeAgChCgDhD
7 bnj1256.7 ψφxEyE¬yRx
8 abid gg|dBgFndxdgx=GxgpredxARdBgFndxdgx=GxgpredxAR
9 8 bnj1238 gg|dBgFndxdgx=GxgpredxARdBgFnd
10 eqid xgpredxAR=xgpredxAR
11 eqid g|dBgFndxdgx=GxgpredxAR=g|dBgFndxdgx=GxgpredxAR
12 2 3 10 11 bnj1234 C=g|dBgFndxdgx=GxgpredxAR
13 9 12 eleq2s gCdBgFnd
14 6 13 bnj770 φdBgFnd