Metamath Proof Explorer


Theorem bnj1275

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1275.1 φ x ψ χ
bnj1275.2 φ x φ
Assertion bnj1275 φ x φ ψ χ

Proof

Step Hyp Ref Expression
1 bnj1275.1 φ x ψ χ
2 bnj1275.2 φ x φ
3 2 1 bnj596 φ x φ ψ χ
4 3anass φ ψ χ φ ψ χ
5 3 4 bnj1198 φ x φ ψ χ