Metamath Proof Explorer


Theorem bnj1276

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1276.1 φ x φ
bnj1276.2 ψ x ψ
bnj1276.3 χ x χ
bnj1276.4 θ φ ψ χ
Assertion bnj1276 θ x θ

Proof

Step Hyp Ref Expression
1 bnj1276.1 φ x φ
2 bnj1276.2 ψ x ψ
3 bnj1276.3 χ x χ
4 bnj1276.4 θ φ ψ χ
5 1 2 3 hb3an φ ψ χ x φ ψ χ
6 4 5 hbxfrbi θ x θ