Metamath Proof Explorer


Theorem bnj1276

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1276.1 φxφ
bnj1276.2 ψxψ
bnj1276.3 χxχ
bnj1276.4 θφψχ
Assertion bnj1276 θxθ

Proof

Step Hyp Ref Expression
1 bnj1276.1 φxφ
2 bnj1276.2 ψxψ
3 bnj1276.3 χxχ
4 bnj1276.4 θφψχ
5 1 2 3 hb3an φψχxφψχ
6 4 5 hbxfrbi θxθ