Metamath Proof Explorer


Theorem bnj1280

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1280.1 B = d | d A x d pred x A R d
bnj1280.2 Y = x f pred x A R
bnj1280.3 C = f | d B f Fn d x d f x = G Y
bnj1280.4 D = dom g dom h
bnj1280.5 E = x D | g x h x
bnj1280.6 φ R FrSe A g C h C g D h D
bnj1280.7 ψ φ x E y E ¬ y R x
bnj1280.17 ψ pred x A R E =
Assertion bnj1280 ψ g pred x A R = h pred x A R

Proof

Step Hyp Ref Expression
1 bnj1280.1 B = d | d A x d pred x A R d
2 bnj1280.2 Y = x f pred x A R
3 bnj1280.3 C = f | d B f Fn d x d f x = G Y
4 bnj1280.4 D = dom g dom h
5 bnj1280.5 E = x D | g x h x
6 bnj1280.6 φ R FrSe A g C h C g D h D
7 bnj1280.7 ψ φ x E y E ¬ y R x
8 bnj1280.17 ψ pred x A R E =
9 1 2 3 4 5 6 7 bnj1286 ψ pred x A R D
10 9 sseld ψ z pred x A R z D
11 disj1 pred x A R E = z z pred x A R ¬ z E
12 8 11 sylib ψ z z pred x A R ¬ z E
13 12 19.21bi ψ z pred x A R ¬ z E
14 fveq2 x = z g x = g z
15 fveq2 x = z h x = h z
16 14 15 neeq12d x = z g x h x g z h z
17 16 5 elrab2 z E z D g z h z
18 17 notbii ¬ z E ¬ z D g z h z
19 imnan z D ¬ g z h z ¬ z D g z h z
20 nne ¬ g z h z g z = h z
21 20 imbi2i z D ¬ g z h z z D g z = h z
22 18 19 21 3bitr2i ¬ z E z D g z = h z
23 13 22 syl6ib ψ z pred x A R z D g z = h z
24 10 23 mpdd ψ z pred x A R g z = h z
25 24 imp ψ z pred x A R g z = h z
26 fvres z D g D z = g z
27 10 26 syl6 ψ z pred x A R g D z = g z
28 27 imp ψ z pred x A R g D z = g z
29 fvres z D h D z = h z
30 10 29 syl6 ψ z pred x A R h D z = h z
31 30 imp ψ z pred x A R h D z = h z
32 25 28 31 3eqtr4d ψ z pred x A R g D z = h D z
33 32 ralrimiva ψ z pred x A R g D z = h D z
34 9 resabs1d ψ g D pred x A R = g pred x A R
35 9 resabs1d ψ h D pred x A R = h pred x A R
36 34 35 eqeq12d ψ g D pred x A R = h D pred x A R g pred x A R = h pred x A R
37 1 2 3 4 5 6 7 bnj1256 φ d B g Fn d
38 4 bnj1292 D dom g
39 fndm g Fn d dom g = d
40 38 39 sseqtrid g Fn d D d
41 fnssres g Fn d D d g D Fn D
42 40 41 mpdan g Fn d g D Fn D
43 37 42 bnj31 φ d B g D Fn D
44 43 bnj1265 φ g D Fn D
45 7 44 bnj835 ψ g D Fn D
46 1 2 3 4 5 6 7 bnj1259 φ d B h Fn d
47 4 bnj1293 D dom h
48 fndm h Fn d dom h = d
49 47 48 sseqtrid h Fn d D d
50 fnssres h Fn d D d h D Fn D
51 49 50 mpdan h Fn d h D Fn D
52 46 51 bnj31 φ d B h D Fn D
53 52 bnj1265 φ h D Fn D
54 7 53 bnj835 ψ h D Fn D
55 fvreseq g D Fn D h D Fn D pred x A R D g D pred x A R = h D pred x A R z pred x A R g D z = h D z
56 45 54 9 55 syl21anc ψ g D pred x A R = h D pred x A R z pred x A R g D z = h D z
57 36 56 bitr3d ψ g pred x A R = h pred x A R z pred x A R g D z = h D z
58 33 57 mpbird ψ g pred x A R = h pred x A R