Metamath Proof Explorer


Theorem bnj1286

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1286.1 B = d | d A x d pred x A R d
bnj1286.2 Y = x f pred x A R
bnj1286.3 C = f | d B f Fn d x d f x = G Y
bnj1286.4 D = dom g dom h
bnj1286.5 E = x D | g x h x
bnj1286.6 φ R FrSe A g C h C g D h D
bnj1286.7 ψ φ x E y E ¬ y R x
Assertion bnj1286 ψ pred x A R D

Proof

Step Hyp Ref Expression
1 bnj1286.1 B = d | d A x d pred x A R d
2 bnj1286.2 Y = x f pred x A R
3 bnj1286.3 C = f | d B f Fn d x d f x = G Y
4 bnj1286.4 D = dom g dom h
5 bnj1286.5 E = x D | g x h x
6 bnj1286.6 φ R FrSe A g C h C g D h D
7 bnj1286.7 ψ φ x E y E ¬ y R x
8 1 2 3 4 5 6 7 bnj1256 φ d B g Fn d
9 8 bnj1196 φ d d B g Fn d
10 1 bnj1517 d B x d pred x A R d
11 10 adantr d B g Fn d x d pred x A R d
12 fndm g Fn d dom g = d
13 sseq2 dom g = d pred x A R dom g pred x A R d
14 13 raleqbi1dv dom g = d x dom g pred x A R dom g x d pred x A R d
15 12 14 syl g Fn d x dom g pred x A R dom g x d pred x A R d
16 15 adantl d B g Fn d x dom g pred x A R dom g x d pred x A R d
17 11 16 mpbird d B g Fn d x dom g pred x A R dom g
18 9 17 bnj593 φ d x dom g pred x A R dom g
19 18 bnj937 φ x dom g pred x A R dom g
20 7 19 bnj835 ψ x dom g pred x A R dom g
21 5 ssrab3 E D
22 4 bnj1292 D dom g
23 21 22 sstri E dom g
24 23 sseli x E x dom g
25 7 24 bnj836 ψ x dom g
26 20 25 bnj1294 ψ pred x A R dom g
27 1 2 3 4 5 6 7 bnj1259 φ d B h Fn d
28 27 bnj1196 φ d d B h Fn d
29 10 adantr d B h Fn d x d pred x A R d
30 fndm h Fn d dom h = d
31 sseq2 dom h = d pred x A R dom h pred x A R d
32 31 raleqbi1dv dom h = d x dom h pred x A R dom h x d pred x A R d
33 30 32 syl h Fn d x dom h pred x A R dom h x d pred x A R d
34 33 adantl d B h Fn d x dom h pred x A R dom h x d pred x A R d
35 29 34 mpbird d B h Fn d x dom h pred x A R dom h
36 28 35 bnj593 φ d x dom h pred x A R dom h
37 36 bnj937 φ x dom h pred x A R dom h
38 7 37 bnj835 ψ x dom h pred x A R dom h
39 4 bnj1293 D dom h
40 21 39 sstri E dom h
41 40 sseli x E x dom h
42 7 41 bnj836 ψ x dom h
43 38 42 bnj1294 ψ pred x A R dom h
44 26 43 ssind ψ pred x A R dom g dom h
45 44 4 sseqtrrdi ψ pred x A R D