Metamath Proof Explorer


Theorem bnj1294

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1294.1 φ x A ψ
bnj1294.2 φ x A
Assertion bnj1294 φ ψ

Proof

Step Hyp Ref Expression
1 bnj1294.1 φ x A ψ
2 bnj1294.2 φ x A
3 df-ral x A ψ x x A ψ
4 sp x x A ψ x A ψ
5 4 impcom x A x x A ψ ψ
6 3 5 sylan2b x A x A ψ ψ
7 2 1 6 syl2anc φ ψ