Metamath Proof Explorer


Theorem bnj1296

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1296.1 B = d | d A x d pred x A R d
bnj1296.2 Y = x f pred x A R
bnj1296.3 C = f | d B f Fn d x d f x = G Y
bnj1296.4 D = dom g dom h
bnj1296.5 E = x D | g x h x
bnj1296.6 φ R FrSe A g C h C g D h D
bnj1296.7 ψ φ x E y E ¬ y R x
bnj1296.18 ψ g pred x A R = h pred x A R
bnj1296.9 Z = x g pred x A R
bnj1296.10 K = g | d B g Fn d x d g x = G Z
bnj1296.11 W = x h pred x A R
bnj1296.12 L = h | d B h Fn d x d h x = G W
Assertion bnj1296 ψ g x = h x

Proof

Step Hyp Ref Expression
1 bnj1296.1 B = d | d A x d pred x A R d
2 bnj1296.2 Y = x f pred x A R
3 bnj1296.3 C = f | d B f Fn d x d f x = G Y
4 bnj1296.4 D = dom g dom h
5 bnj1296.5 E = x D | g x h x
6 bnj1296.6 φ R FrSe A g C h C g D h D
7 bnj1296.7 ψ φ x E y E ¬ y R x
8 bnj1296.18 ψ g pred x A R = h pred x A R
9 bnj1296.9 Z = x g pred x A R
10 bnj1296.10 K = g | d B g Fn d x d g x = G Z
11 bnj1296.11 W = x h pred x A R
12 bnj1296.12 L = h | d B h Fn d x d h x = G W
13 8 opeq2d ψ x g pred x A R = x h pred x A R
14 13 9 11 3eqtr4g ψ Z = W
15 14 fveq2d ψ G Z = G W
16 10 bnj1436 g K d B g Fn d x d g x = G Z
17 fndm g Fn d dom g = d
18 17 anim1i g Fn d x d g x = G Z dom g = d x d g x = G Z
19 16 18 bnj31 g K d B dom g = d x d g x = G Z
20 raleq dom g = d x dom g g x = G Z x d g x = G Z
21 20 pm5.32i dom g = d x dom g g x = G Z dom g = d x d g x = G Z
22 21 rexbii d B dom g = d x dom g g x = G Z d B dom g = d x d g x = G Z
23 19 22 sylibr g K d B dom g = d x dom g g x = G Z
24 simpr dom g = d x dom g g x = G Z x dom g g x = G Z
25 23 24 bnj31 g K d B x dom g g x = G Z
26 25 bnj1265 g K x dom g g x = G Z
27 2 3 9 10 bnj1234 C = K
28 26 27 eleq2s g C x dom g g x = G Z
29 6 28 bnj770 φ x dom g g x = G Z
30 7 29 bnj835 ψ x dom g g x = G Z
31 4 bnj1292 D dom g
32 5 7 bnj1212 ψ x D
33 31 32 bnj1213 ψ x dom g
34 30 33 bnj1294 ψ g x = G Z
35 12 bnj1436 h L d B h Fn d x d h x = G W
36 fndm h Fn d dom h = d
37 36 anim1i h Fn d x d h x = G W dom h = d x d h x = G W
38 35 37 bnj31 h L d B dom h = d x d h x = G W
39 raleq dom h = d x dom h h x = G W x d h x = G W
40 39 pm5.32i dom h = d x dom h h x = G W dom h = d x d h x = G W
41 40 rexbii d B dom h = d x dom h h x = G W d B dom h = d x d h x = G W
42 38 41 sylibr h L d B dom h = d x dom h h x = G W
43 simpr dom h = d x dom h h x = G W x dom h h x = G W
44 42 43 bnj31 h L d B x dom h h x = G W
45 44 bnj1265 h L x dom h h x = G W
46 2 3 11 12 bnj1234 C = L
47 45 46 eleq2s h C x dom h h x = G W
48 6 47 bnj771 φ x dom h h x = G W
49 7 48 bnj835 ψ x dom h h x = G W
50 4 bnj1293 D dom h
51 50 32 bnj1213 ψ x dom h
52 49 51 bnj1294 ψ h x = G W
53 15 34 52 3eqtr4d ψ g x = h x