Metamath Proof Explorer


Theorem bnj1304

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1304.1 φ x ψ
bnj1304.2 ψ χ
bnj1304.3 ψ ¬ χ
Assertion bnj1304 ¬ φ

Proof

Step Hyp Ref Expression
1 bnj1304.1 φ x ψ
2 bnj1304.2 ψ χ
3 bnj1304.3 ψ ¬ χ
4 notnotb x χ ¬ χ ¬ ¬ x χ ¬ χ
5 notnotb χ ¬ ¬ χ
6 5 anbi2i ¬ χ χ ¬ χ ¬ ¬ χ
7 6 exbii x ¬ χ χ x ¬ χ ¬ ¬ χ
8 ioran ¬ χ ¬ χ ¬ χ ¬ ¬ χ
9 8 exbii x ¬ χ ¬ χ x ¬ χ ¬ ¬ χ
10 exnal x ¬ χ ¬ χ ¬ x χ ¬ χ
11 7 9 10 3bitr2ri ¬ x χ ¬ χ x ¬ χ χ
12 11 notbii ¬ ¬ x χ ¬ χ ¬ x ¬ χ χ
13 exancom x ¬ χ χ x χ ¬ χ
14 13 notbii ¬ x ¬ χ χ ¬ x χ ¬ χ
15 4 12 14 3bitri x χ ¬ χ ¬ x χ ¬ χ
16 exmid χ ¬ χ
17 15 16 mpgbi ¬ x χ ¬ χ
18 2 3 jca ψ χ ¬ χ
19 1 18 bnj593 φ x χ ¬ χ
20 17 19 mto ¬ φ