Metamath Proof Explorer


Theorem bnj1311

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1311.1 B = d | d A x d pred x A R d
bnj1311.2 Y = x f pred x A R
bnj1311.3 C = f | d B f Fn d x d f x = G Y
bnj1311.4 D = dom g dom h
Assertion bnj1311 R FrSe A g C h C g D = h D

Proof

Step Hyp Ref Expression
1 bnj1311.1 B = d | d A x d pred x A R d
2 bnj1311.2 Y = x f pred x A R
3 bnj1311.3 C = f | d B f Fn d x d f x = G Y
4 bnj1311.4 D = dom g dom h
5 biid R FrSe A g C h C g D h D R FrSe A g C h C g D h D
6 5 bnj1232 R FrSe A g C h C g D h D R FrSe A
7 ssrab2 x D | g x h x D
8 5 bnj1235 R FrSe A g C h C g D h D g C
9 eqid x g pred x A R = x g pred x A R
10 eqid g | d B g Fn d x d g x = G x g pred x A R = g | d B g Fn d x d g x = G x g pred x A R
11 2 3 9 10 bnj1234 C = g | d B g Fn d x d g x = G x g pred x A R
12 8 11 eleqtrdi R FrSe A g C h C g D h D g g | d B g Fn d x d g x = G x g pred x A R
13 abid g g | d B g Fn d x d g x = G x g pred x A R d B g Fn d x d g x = G x g pred x A R
14 13 bnj1238 g g | d B g Fn d x d g x = G x g pred x A R d B g Fn d
15 14 bnj1196 g g | d B g Fn d x d g x = G x g pred x A R d d B g Fn d
16 1 abeq2i d B d A x d pred x A R d
17 16 simplbi d B d A
18 fndm g Fn d dom g = d
19 17 18 bnj1241 d B g Fn d dom g A
20 15 19 bnj593 g g | d B g Fn d x d g x = G x g pred x A R d dom g A
21 20 bnj937 g g | d B g Fn d x d g x = G x g pred x A R dom g A
22 ssinss1 dom g A dom g dom h A
23 12 21 22 3syl R FrSe A g C h C g D h D dom g dom h A
24 4 23 eqsstrid R FrSe A g C h C g D h D D A
25 7 24 sstrid R FrSe A g C h C g D h D x D | g x h x A
26 eqid x D | g x h x = x D | g x h x
27 biid R FrSe A g C h C g D h D x x D | g x h x y x D | g x h x ¬ y R x R FrSe A g C h C g D h D x x D | g x h x y x D | g x h x ¬ y R x
28 1 2 3 4 26 5 27 bnj1253 R FrSe A g C h C g D h D x D | g x h x
29 nfrab1 _ x x D | g x h x
30 29 nfcrii z x D | g x h x x z x D | g x h x
31 30 bnj1228 R FrSe A x D | g x h x A x D | g x h x x x D | g x h x y x D | g x h x ¬ y R x
32 6 25 28 31 syl3anc R FrSe A g C h C g D h D x x D | g x h x y x D | g x h x ¬ y R x
33 ax-5 R FrSe A x R FrSe A
34 1 bnj1309 w B x w B
35 3 34 bnj1307 w C x w C
36 35 hblem g C x g C
37 35 hblem h C x h C
38 ax-5 g D h D x g D h D
39 33 36 37 38 bnj982 R FrSe A g C h C g D h D x R FrSe A g C h C g D h D
40 32 27 39 bnj1521 R FrSe A g C h C g D h D x R FrSe A g C h C g D h D x x D | g x h x y x D | g x h x ¬ y R x
41 simp2 R FrSe A g C h C g D h D x x D | g x h x y x D | g x h x ¬ y R x x x D | g x h x
42 1 2 3 4 26 5 27 bnj1279 x x D | g x h x y x D | g x h x ¬ y R x pred x A R x D | g x h x =
43 42 3adant1 R FrSe A g C h C g D h D x x D | g x h x y x D | g x h x ¬ y R x pred x A R x D | g x h x =
44 1 2 3 4 26 5 27 43 bnj1280 R FrSe A g C h C g D h D x x D | g x h x y x D | g x h x ¬ y R x g pred x A R = h pred x A R
45 eqid x h pred x A R = x h pred x A R
46 eqid h | d B h Fn d x d h x = G x h pred x A R = h | d B h Fn d x d h x = G x h pred x A R
47 1 2 3 4 26 5 27 44 9 10 45 46 bnj1296 R FrSe A g C h C g D h D x x D | g x h x y x D | g x h x ¬ y R x g x = h x
48 26 bnj1538 x x D | g x h x g x h x
49 48 necon2bi g x = h x ¬ x x D | g x h x
50 47 49 syl R FrSe A g C h C g D h D x x D | g x h x y x D | g x h x ¬ y R x ¬ x x D | g x h x
51 40 41 50 bnj1304 ¬ R FrSe A g C h C g D h D
52 df-bnj17 R FrSe A g C h C g D h D R FrSe A g C h C g D h D
53 51 52 mtbi ¬ R FrSe A g C h C g D h D
54 53 imnani R FrSe A g C h C ¬ g D h D
55 nne ¬ g D h D g D = h D
56 54 55 sylib R FrSe A g C h C g D = h D