Metamath Proof Explorer


Theorem bnj1316

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1316.1 yAxyA
bnj1316.2 yBxyB
Assertion bnj1316 A=BxAC=xBC

Proof

Step Hyp Ref Expression
1 bnj1316.1 yAxyA
2 bnj1316.2 yBxyB
3 1 nfcii _xA
4 2 nfcii _xB
5 3 4 nfeq xA=B
6 5 nf5ri A=BxA=B
7 6 bnj956 A=BxAC=xBC