Metamath Proof Explorer


Theorem bnj1316

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1316.1 y A x y A
bnj1316.2 y B x y B
Assertion bnj1316 A = B x A C = x B C

Proof

Step Hyp Ref Expression
1 bnj1316.1 y A x y A
2 bnj1316.2 y B x y B
3 1 nfcii _ x A
4 2 nfcii _ x B
5 3 4 nfeq x A = B
6 5 nf5ri A = B x A = B
7 6 bnj956 A = B x A C = x B C