Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1321.1 | |
|
bnj1321.2 | |
||
bnj1321.3 | |
||
bnj1321.4 | |
||
Assertion | bnj1321 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1321.1 | |
|
2 | bnj1321.2 | |
|
3 | bnj1321.3 | |
|
4 | bnj1321.4 | |
|
5 | simpr | |
|
6 | simp1 | |
|
7 | 4 | simplbi | |
8 | 7 | 3ad2ant2 | |
9 | nfab1 | |
|
10 | 3 9 | nfcxfr | |
11 | 10 | nfcri | |
12 | nfv | |
|
13 | 11 12 | nfan | |
14 | eleq1w | |
|
15 | dmeq | |
|
16 | 15 | eqeq1d | |
17 | 14 16 | anbi12d | |
18 | 4 17 | bitrid | |
19 | 13 18 | sbiev | |
20 | 19 | simplbi | |
21 | 20 | 3ad2ant3 | |
22 | eqid | |
|
23 | 1 2 3 22 | bnj1326 | |
24 | 6 8 21 23 | syl3anc | |
25 | 4 | simprbi | |
26 | 25 | 3ad2ant2 | |
27 | 19 | simprbi | |
28 | 27 | 3ad2ant3 | |
29 | 26 28 | eqtr4d | |
30 | bnj1322 | |
|
31 | 30 | reseq2d | |
32 | 29 31 | syl | |
33 | releq | |
|
34 | 1 2 3 | bnj66 | |
35 | 33 34 | vtoclga | |
36 | resdm | |
|
37 | 8 35 36 | 3syl | |
38 | 32 37 | eqtrd | |
39 | eqeq2 | |
|
40 | 30 39 | mpbid | |
41 | 40 | reseq2d | |
42 | 29 41 | syl | |
43 | 1 2 3 | bnj66 | |
44 | resdm | |
|
45 | 21 43 44 | 3syl | |
46 | 42 45 | eqtrd | |
47 | 24 38 46 | 3eqtr3d | |
48 | 47 | 3expib | |
49 | 48 | alrimivv | |
50 | 49 | adantr | |
51 | nfv | |
|
52 | 51 | eu2 | |
53 | 5 50 52 | sylanbrc | |