Metamath Proof Explorer


Theorem bnj1326

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1326.1 B = d | d A x d pred x A R d
bnj1326.2 Y = x f pred x A R
bnj1326.3 C = f | d B f Fn d x d f x = G Y
bnj1326.4 D = dom g dom h
Assertion bnj1326 R FrSe A g C h C g D = h D

Proof

Step Hyp Ref Expression
1 bnj1326.1 B = d | d A x d pred x A R d
2 bnj1326.2 Y = x f pred x A R
3 bnj1326.3 C = f | d B f Fn d x d f x = G Y
4 bnj1326.4 D = dom g dom h
5 eleq1w q = h q C h C
6 5 3anbi3d q = h R FrSe A g C q C R FrSe A g C h C
7 dmeq q = h dom q = dom h
8 7 ineq2d q = h dom g dom q = dom g dom h
9 8 reseq2d q = h g dom g dom q = g dom g dom h
10 4 reseq2i g D = g dom g dom h
11 9 10 eqtr4di q = h g dom g dom q = g D
12 8 reseq2d q = h q dom g dom q = q dom g dom h
13 reseq1 q = h q dom g dom h = h dom g dom h
14 12 13 eqtrd q = h q dom g dom q = h dom g dom h
15 4 reseq2i h D = h dom g dom h
16 14 15 eqtr4di q = h q dom g dom q = h D
17 11 16 eqeq12d q = h g dom g dom q = q dom g dom q g D = h D
18 6 17 imbi12d q = h R FrSe A g C q C g dom g dom q = q dom g dom q R FrSe A g C h C g D = h D
19 eleq1w p = g p C g C
20 19 3anbi2d p = g R FrSe A p C q C R FrSe A g C q C
21 dmeq p = g dom p = dom g
22 21 ineq1d p = g dom p dom q = dom g dom q
23 22 reseq2d p = g p dom p dom q = p dom g dom q
24 reseq1 p = g p dom g dom q = g dom g dom q
25 23 24 eqtrd p = g p dom p dom q = g dom g dom q
26 22 reseq2d p = g q dom p dom q = q dom g dom q
27 25 26 eqeq12d p = g p dom p dom q = q dom p dom q g dom g dom q = q dom g dom q
28 20 27 imbi12d p = g R FrSe A p C q C p dom p dom q = q dom p dom q R FrSe A g C q C g dom g dom q = q dom g dom q
29 eqid dom p dom q = dom p dom q
30 1 2 3 29 bnj1311 R FrSe A p C q C p dom p dom q = q dom p dom q
31 28 30 chvarvv R FrSe A g C q C g dom g dom q = q dom g dom q
32 18 31 chvarvv R FrSe A g C h C g D = h D